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Abstract
We address the issue of large-order expansions in strong-field QED. Our
approach is based on the one-loop effective action encoded in the associated
photon polarization tensor. We concentrate on the simple case of crossed
fields aiming at possible applications of high-power lasers to measure vacuum
birefringence. A simple next-to-leading order derivative expansion reveals that
the indices of refraction increase with frequency. This signals normal dispersion
in the small-frequency regime where the derivative expansion makes sense. To
gain information beyond that regime we determine the factorial growth of the
derivative expansion coefficients evaluating the first 82 orders by means of
computer algebra. From this we can infer a nonperturbative imaginary part
for the indices of refraction indicating absorption (pair production) as soon as
energy and intensity become (super)critical. These results compare favourably
with an analytic evaluation of the polarization tensor asymptotics. Kramers–
Kronig relations finally allow for a nonperturbative definition of the real parts
as well and show that absorption goes hand in hand with anomalous dispersion
for sufficiently large frequencies and fields.

PACS numbers: 12.20.−m, 42.50.Xa, 42.60.−v

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent years have seen a continuous progress in laser technology leading to ever increasing
values of power and intensity. This is true for both optical lasers [1, 2] and systems based
on free electrons such as the DESY vacuum ultraviolet free electron laser (VUV-FEL), a
pilot system for the XFEL radiating in the x-ray regime [3]. High intensities imply strong
electromagnetic fields which approach magnitudes such that vacuum polarization effects may

0305-4470/06/3711623+23$30.00 © 2006 IOP Publishing Ltd Printed in the UK 11623

http://dx.doi.org/10.1088/0305-4470/39/37/018
mailto:theinzl@plymouth.ac.uk
mailto:O.Schroeder@science-computing.de
http://stacks.iop.org/JPhysA/39/11623


11624 T Heinzl and O Schröder

no longer be ignored even at the comparatively low photon energies involved (1 eV–10 keV).
The theory describing these effects is strong-field quantum electrodynamics (QED).

The most exciting and therefore best-studied effect arises when the ubiquitous virtual
electron–positron pairs become real (Schwinger pair production [4]). This happens if the
energy gain of an electron across a Compton wavelength λ̄e equals its rest energy me implying
a critical electric field

Ec ≡ m2
e

e
� 1.3 × 1018 V m−1. (1)

This also is often named after Schwinger although it has first been obtained by Sauter upon
solving the Dirac equation in a homogeneous electric field [5].

The physical situation to be analysed in this paper is as follows. We assume a background
field consisting of an intense, focused laser beam of optical frequency � � 1 eV � me.
The associated gauge potential and field strengths are denoted by Aµ and Fµν , respectively.
The laser beam configuration is modelled by crossed fields with electric and magnetic fields
constant, orthogonal and of the same magnitude,

E = B ≡ F = const, E ⊥ B. (2)

This configuration may be viewed as the zero-frequency limit of a plane wave, � → 0. In
covariant notation one may write

Aµ = 1
2Fµνx

ν, (3)

with, for instance, F01 = F = −F31 and all other (independent) entries vanishing. Working
with crossed fields leads to enormous simplifications as will be seen below.

The crossed-field configuration will be probed by a weak plane-wave field encoded in the
potential aµ and field strength fµν = ∂µaν − ∂νaµ. We denote the probe wave vector by

k = ω(1, nk), (4)

where n � 1 represents the index of refraction (n = 1 in vacuo) and the unit vector k the
direction of propagation. Note that n = 1/v with v = ω/|k| � 1 being the phase velocity of
the probe propagating through the modified vacuum. This set-up has recently been suggested
for an experiment to measure vacuum birefringence for the first time [6].

The corrections to pure Maxwell theory to leading order in the fluctuation aµ are given
by the effective action [7]

δS ≡ 1

2

∫
d4x d4y aµ(x)�µν(x, y;A)aν(y). (5)

This is basically determined by the polarization tensor (or photon self-energy) �µν in the
presence of the background field Aµ.

In one-loop approximation the polarization tensor is represented by the Feynman diagram

Πµν = (6)

where the heavy lines denote the fermion propagator dressed by the background field A (dashed
lines below),

SF [A] ≡ = + + + . . . (7)

Obviously, the first term on the right-hand side in (7) corresponds to vanishing background
fields, A = 0. In terms of the dressed propagator SF the polarization tensor (in momentum

poltensor.eps
dressedprop.eps


Large orders in strong-field QED 11625

space) is given by the integral

�µν(k;A) = −ie2 tr
∫

d4p

(2π)4
γ µSF (p)γ νSF (p − k), (8)

where ‘tr’ denotes the Dirac trace.
The dressed propagator and the associated one-loop polarization tensor are known exactly

for a few special backgrounds only (see [8] and [9] for overviews). In particular, an exact
solution is available for the crossed fields (2) due to Narozhnyi [10] and Ritus [11] (for a
generalization to plane waves, see [12]). Their results may be written somewhat symbolically
in terms of a spectral decomposition,

�µν(k;A) =
∑

i=0,±
�i(k;A)ε

µ

i εν
i , (9)

with three orthogonal eigenvectors εi = εi(k;A) satisfying εi · k = 0. The eigenvalues �i

are given by somewhat complicated double integrals, the explicit form of which will be given
below. It is important to note that the representation (9) is valid for arbitrary external field
strength and probe frequency. In other words, it contains all orders in the background intensity
and probe energy.

Let us briefly get an idea of the orders of magnitude involved. We assume that our probe
is provided by another laser, possibly of high frequency, i.e. ω � �. For instance, if we think
of the projected DESY XFEL as a probe with a projected wave length of λ = 0.1 nm, hence
ω � 10 keV, we expect a ratio ω/me � 0.02 � 1, that is low energy also for the probe. About
the same frequencies can be achieved for photons from a laser-based Thomson back-scattering
source [13].

Assuming the background as an optical Petawatt laser focused down to the diffraction
limit the peak intensity will be [2, 14]

I = P/�2π � 3 × 1022 W cm−2, (10)

for wavelength � = 2π/� � 1 µm and power P = 1 PW. Sauter’s critical field (1) corresponds
to an intensity of

Ic = E2
c = m4

e

/
e2 � 4 × 1029 W cm−2, (11)

still seven orders of magnitude larger than (10) implying low intensity for our background
laser3. Hence for present technology we have two primary small parameters [6, 15], namely

ν2 ≡ ω2/m2
e � 4 × 10−4, (12)

ε2 ≡ E2
/
E2

c = I/Ic � 1 × 10−7. (13)

We have listed the squared values as these typically arise as the leading-order (LO)
contributions the reasons being essentially Lorentz and gauge invariance.

In view of the small parameters (12) and (13) it seems safe to assume that LO accuracy in
ν2 and ε2 will suffice for the time being. Anticipating further increase in laser power [1] we
will, however, also consider higher orders in this paper and confront the outcome numerically
with the exact (albeit implicit) one-loop results. This should provide some intuition about
the limitations of derivative and weak-field expansions in cases where exact results are not
available and one has to rely entirely on the accuracy of the expansions.

3 While the presently attainable fields are ‘weak’ compared to the critical field they are certainly very strong by
everyday standards. In particular they exceed static lab magnetic fields by orders of magnitude. This justifies the
phrase ‘strong-field QED’ in the title.
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The paper is organized follows. We first go through a general (mainly algebraic) discussion
of the polarization tensor where we also give the integral representations. Section 3 discusses
the next-to-leading (NLO) results while section 4 extends these to order 80. Our findings are
then compared with an asymptotic analysis of the integral representations in section 5. We
finally present our conclusions in section 6.

2. General analysis of Πµν

In order to evaluate (9) the following choice for the basis vectors εi has been suggested in [16],

bµ ≡ Fµνkν, (14)

b̃µ ≡ F̃ µνkν, (15)

cµ ≡ Fµνbν, (16)

where, as usual, F̃ µν = (1/2)εµναβFαβ denotes the dual field strength. The first two basis
vectors are obviously orthogonal to k,

b · k = 0 = b̃ · k, (17)

while the last one is not,

c · k = −b2. (18)

However, if we follow [11] and define

dµ ≡
(

gµν − kµkν

k2

)
cν ≡ P

µνcν ≡ − 1

k2
εµνρσ kνbρb̃σ , (19)

the vectors b, b̃ and d constitute an orthogonal dreibein which satisfies

dµdν

d2
+

b̃µb̃ν

b2
+

bµbν

b2
= P

µν. (20)

The spectral decomposition (9) may then be rewritten as

�µν = �0
dµdν

d2
+ �+

b̃µb̃ν

b2
+ �−

bµbν

b2
, (21)

and coincides with the one used in the monograph [8]. The eigenvalues �i depend on
all the independent invariants one can form from kµ, the basis vectors and the background
field strength. For crossed fields, however, most of these are either vanishing or dependent
quantities. In particular, we have

S ≡ − 1
4FµνF

µν = 0, (22)

P ≡ − 1
4FµνF̃

µν = 0. (23)

We are thus left with only two basic invariants, k2 and b2, such that the eigenvalues in (21)
can be written as a linear combination of those,

�i ≡ k2P(k2, b2) +
b2

Ic

Pi(k
2, b2), i = 0,±, (24)

where P and Pi are dimensionless polynomials in k2 and b2 (see below). Note that the k2-term
is the same for all eigenvalues as it is the one surviving the limit of vanishing background
(b2 → 0). According to (4) we have

k2 = ω2(1 − n2), (25)
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which is negative4 in a modified vacuum (n > 1). To calculate b2 we note that the Maxwell
energy–momentum tensor for the crossed background fields is

T µν = FµλFλ
ν − gµνS = FµλFλ

ν, (26)

whereupon b2 simply becomes

b2(k) = −T µνkµkν. (27)

Using (4) again this translates into the expression

b2 = −ω2[H(1 + n2) − 2nS · k − n2Hk], (28)

where we have introduced the abbreviations

H ≡ T 00 = 1
2 (E2 + B2) = F 2, (29)

Si ≡ T 0i = εijkEjBk, (30)

Hk ≡ (E · k)2 + (B · k)2, (31)

the first two of which represent the Maxwell energy–density and the Poynting vector,
respectively. Note that both these quantities are directly related to the intensity,

H = |S| = I. (32)

Expression (28) for b2 coincides with the quantity zk on p 21 of [8]. There is, however,
an alternative expression which nicely illustrates the kinematics involved. Introducing the
background 4-vector K ≡ �(1,K),K2 = 1 and assuming background gauge ∂ · A = 0 one
finds

b2 = b2(θ) = −ω2I (1 − n cos θ)2 � 0, (33)

where θ is the angle between the probe and background directions (k and K, respectively).
Note that b2 becomes independent of n for a perpendicular configuration implying b2(π/2) =
−ω2I .

In order to obtain reasonably simple expressions for the coefficient functions P and Pi

multiplying k2 and b2/Ic in (24) we follow [11] and trade the invariants k2 and b2 for the
dimensionless parameters

λ ≡ k2
/
m2

e = ν2(1 − n2) � 0, (34)

κ2 ≡ −b2
/
Icm

2
e = ε2ν2(1 − n cos θ)2 � 0. (35)

The eigenvalues of �µν from (24) are then given by the expressions

�0(λ, κ2) = m2
eλP (λ, κ2), (36)

�±(λ, κ2) = �0(λ, κ2) − m2
eκ

2P±(λ, κ2), (37)

implying P0 = 0 in particular. Using the integral representations given in [11] the remaining
coefficient functions P and P± may be compactly written as

P(λ, κ2) = P(λ, 0) − 2α

π

∫ 1

0
dx xx̄f1(z), (38)

4 Our metric is gµν = diag(1, −1,−1, −1).
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P(λ, 0) = 2α

π

∫ 1

0
dx xx̄ ln(1 − λxx̄), (39)

P±(λ, κ2) = − α

3π
κ−4/3

∫ 1

0
dx

2 + (1 ± 3)xx̄

(xx̄)1/3
f ′(z). (40)

In the above, we have introduced the Feynman parameters5 x and x̄ ≡ 1 − x and the variable
[11]

z = z(λ, κ, x) ≡ 1 − λxx̄

(κxx̄)2/3
, (41)

which is the argument of the auxiliary functions

f (z) ≡ i
∫ ∞

0
dt e−izt−it3/3 = π [Gi(z) + iAi(z)], (42)

f1(z) ≡
∫ ∞

0

dt

t
e−izt (e−it3/3 − 1). (43)

f ′ denotes the derivative of f with respect to z; Gi and Ai are Scorer and Airy functions,
respectively (see e.g. [17] or the digital library of mathematical functions [18]).

As both Gi and Ai are real for real arguments we can immediately infer from (40) and (42)
that the eigenvalues �± will develop imaginary parts determined by the Airy function Ai(z)
in the integrand. It is thus natural to expect that also the index n of refraction will become
complex, its imaginary part signalling absorption of photons by the vacuum. Of course, the
only physical interpretation of this phenomenon is pair production.

Enormous simplifications arise naturally for vanishing external field, i.e. κ2 = 0. In this
case all eigenvalues become degenerate, �i ≡ � = m2

eλP and one just obtains Schwinger’s
one-loop expression for the photon self-energy [4] in the form

�µν = �(k2)Pµν = m2
eλP (λ, 0)Pµν. (44)

The scalar function P(λ, 0) is given in (39) and coincides with standard text book results
obtained via covariant perturbation theory (see e.g. [19], chapter 7). For small momenta it
becomes

P(λ, 0) = − α

15π
λ + O(λ2), (45)

so that �(k2) = O(k4) for vanishing external field.
The next logical step is to expand the exponentials in (42) and (43) in powers of λ and κ2.

This amounts to a derivative expansion in the probe field (keeping the background fixed) and
will be further pursued in the next section.

Before that let us conclude the general reasoning by determining the dispersion relations
for k. Adopting a plane wave ansatz for the probe field, fµν = i(kµεν − kνεµ) exp(ik · x), and
adding the Maxwell term yields the wave equation

�µν εν ≡ −(k2
P

µν − �µν)εν = 0, (46)

which has nontrivial solutions only if

det �µν(k) = 0, (47)

5 The Feynman parameter x is related to the integration variables ν in [8] and v in [11] via ν = 2x −1 and v = 1/xx̄,
respectively. In particular, dv = (x − x̄)/(xx̄)2 dx.
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i.e. if an eigenvalue of �µν vanishes,

k2 − �i(k
2, b2) ≡ h

µν

i (k2, b2)kµkν = 0. (48)

Following [20, 21] we have introduce effective metrics h
µν

i to make explicit that (48) represents
‘modified light cone conditions’ [8]. Inserting (24) the three metrics become

h
µν

i (λ, κ2) = gµν[1 + P(λ, κ2)] + T µνPi(λ, κ2)/Ic. (49)

As P0 = 0 the metric h
µν

0 is conformally flat,

h
µν

0 (λ, κ2) = gµν[1 + P(λ, κ2)], (50)

and does not modify the light cone. Note in particular that in contrast to a plasma of real charges
weak crossed fields do not generate a longitudinal photon so that h

µν

0 remains unphysical.
The other two metrics, however, are physical and nontrivial leading to a modified light

propagation. As h1 	= h2 this implies ‘birefringence of the vacuum’. For vanishing external
fields (κ2 = 0) all metrics merge into the conformal metric h

µν

0 (λ, 0) which describes a
standard light cone.

3. NLO derivative expansion for the probe

The integral representations (38)–(40) for the polarization tensor may be expanded in powers of
λ and κ2 which are both O(ν2). This derivative expansion becomes particularly straightforward
if we first expand in ν and only afterwards perform the integrals, a procedure adopted
throughout sections 3 and 4. Thus, we first rewrite the derivative of (42) and the second
function (43) in order to exhibit the dependence on κ and λ,

f ′(z) = (κxx̄)4/3
∫ ∞

0
dτ eiλxx̄τ exp(−iτ − iκ2x2x̄2τ 3/3), (51)

f1(z) =
∫ ∞

0

dτ

τ
eiλxx̄τ e−iτ (exp(−iκ2x2x̄2τ 3/3) − 1), (52)

where z = z(λ, κ, x) was defined in (41). Upon expanding the exponentials the integrals both
over Feynman parameters and proper time become elementary so that the eigenvalues �i to
O(ν4) are found to be

�0
/
m2

e = − α

15π
λ2 +

α

105π
λκ2, (53)

�+
/
m2

e = − 7α

45π
κ2 − α

15π
λ2 − 23α

315π
λκ2 − 52α

945π
κ4, (54)

�−
/
m2

e = − 4α

45π
κ2 − α

15π
λ2 − 2α

45π
λκ2 − 4α

135π
κ4. (55)

Note that only �± have LO contributions, �± = O(κ2) = O(ν2), whereas �0 = O(λ2) =
O(ν4). To proceed we specialize to a head-on collision for which birefringence becomes
maximal, cf (33) and (35). In this case, k ·K = −1 so that κ2 attains its maximum value,

κ2 = ε2ν2(1 + n)2. (56)

The nontrivial dispersion relations �± ≡ k2 − �± = 0 implicitly determine two nontrivial
indices of refraction n± as functions of the small parameters ε2 and ν2. To solve the equations
�±(n, ε, ν) = 0 for the indices n± we write

n± ≡ 1 + �± ≡ 1 +
α

45π
ε2δ±. (57)
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The last expression takes into account that corrections to n = 1 are due to nonvanishing
external field intensity ε2 the coupling to which is O(α). The remainders δ± are expected to
be of order unity. For the value ε2 = 10−7 from (13) the prefactor is of order 10−11 so that
at present the deviations from n = 1 are extremely small. It hence remains an experimental
challenge to really measure them [6, 22].

If we expand the deviations according to

δ± = δ0± + δ2±ν2 + O(ν4), (58)

we find at LO in k2 or ν2, i.e. O(ν0),

δ0+ = 14

1 − 7αε2/45π
= 14

{
1 + 7

αε2

45π
+ O(α2ε4)

}
, (59)

δ0− = 8

1 − 4αε2/45π
= 8

{
1 + 4

αε2

45π
+ O(α2ε4)

}
. (60)

Note that the first terms on the right-hand side are exact to all orders in the intensity ε2.
An independent check of the LO results based on the Heisenberg–Euler Lagrangian will be
performed in the appendix.

To the best of our knowledge, the coefficients of order ε0 in (59) and (60) have first
been obtained in Toll’s thesis [23]6 and independently in [25, 26] (see also [7, 10, 27]). The
NLO=O(ν2) expressions are somewhat more complicated,

δ2+ =
(

416

21
− 184α

45π
+

392α2

675π2

)
ε2

(1 − 7αε2/45π)4
, (61)

δ2− =
(

32

3
− 64α

45π
+

128α2

675π2

)
ε2

(1 − 4αε2/45π)4
. (62)

Again, these expressions are exact to all orders in ε2. For later purposes it is useful to attach
names to the different factors,

δ2± = c2±(α)ε2s2±(αε2). (63)

According to (61) and (62) the c2± are polynomials in α/45π while the s2± have the series
expansions

s2+ = 1 +
28α

45π
ε2 +

98α2

405π2
ε4 + O(ε6), (64)

s2− = 1 +
16α

45π
ε2 +

32α2

405π2
ε4 + O(ε6). (65)

Note that both at LO and NLO the QED expansion parameter is actually α/45π � 5 × 10−5

rather than α itself. The coefficients c2± are dominated by the leading terms of O(α0) which
both have a positive sign. This implies that (at least to first nontrivial order in the derivative
expansion) the indices of refraction increase with frequency so that we have normal (rather
than anomalous) dispersion.

6 As we have not been able to get hold of this unpublished work our statement is based on the notes [24] where the
relevant figure of Toll’s thesis is reproduced on p 33.
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Summarizing the findings above we see the following pattern emerging. Each of the two
indices of refraction has a derivative expansion in ν2,

n± = 1 + �± = 1 +
αε2

45π

∞∑
l=0

δ2l±(α, ε)ν2l , (66)

where the δ2l can be factorized by generalizing (63),

δ2l± ≡ c2l±(α)ε2ls2l±(αε2/45π). (67)

Hence, the different coefficient functions have the generic behaviour

δ2l = O(ε2l ), (68)

c2l = 1 + O(α), (69)

s2l = 1 + O(αε2), (70)

for both subscripts ±. Keeping only the leading orders in α in (67), i.e. δ2l � c2l (0)ε2l , results
in a compact expression for the NLO derivative expansion,

δ± = 11 ± 3 +
320 ± 96

21
ε2ν2 + O(α) + O(αε2). (71)

Again, the relative plus sign between the first and second terms signals normal dispersion.
Extrapolating (71) to all orders adopting the same approximations we expect (58) to become
a function of εν only,

δ �
∞∑
l=0

c2l (0)(εν)2l . (72)

If we have a closer look at the coefficients c0± and c2± (at O(α0)) we see that they actually
increase, the ratios being almost the same for both indices,

c2+

c0+
� 416/21

14
� 1.4 and

c2−
c0−

� 32/3

8
� 1.3. (73)

This is a first hint that our expansion in ν (or εν) is only asymptotic which has to be expected
upon comparing with closely related derivative expansions of effective actions [9, 28]. In the
remainder of the paper we will investigate this issue in detail.

4. Large-order derivative expansion for the probe

Given the present day power of computer algebra systems we have decided to actually check
whether normal dispersion persists beyond NLO in the derivative expansion. The answer is
affirmative as shown in the Mathematica plots of figures 1 and 2. They display the second,
sixth and tenth order in the derivative expansion of � = n − 1 as a function of ν at fixed
background intensity ε2 = 0.1. The LO results (59) and (60) are given by the common
intercept of the different graphs. One clearly identifies normal dispersion and a tendency for
the curves to diverge with increasing order.

As already stated the results of the preceding section indicate strongly that the expansion
(66) of the index of refraction is asymptotic both in frequency and intensity. Hence, for both
the derivative and weak (external) field expansions we expect factorial growth of the expansion
coefficients at large orders.

To test this expectation numerically we expand �± in accordance with (66),

�±(ν, ε) = αε2

45π

∑
l�0

δ2l±(ε)ν2l , (74)
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∆+∗10 5

Figure 1. Higher order results for the deviation �+ of the index n+ from unity as a function of
ν = ω/me at fixed background intensity ε2 = 0.1. Full line: second order; short-dashed line:
sixth order; long-dashed line: tenth order.

0.2 0.4 0.6 0.8 1

4.2

4.6

5.4
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ν

∆_∗105

Figure 2. Same as figure 1 for �−.

with δ2l± as given in (67) and form the ratio7

r2l± ≡ δ2l+2,±
ε2δ2l±

= c2l+2,±(0)

c2l,±(0)
[1 + O(α) + O(αε2)]. (75)

The coefficients can (in principle) be determined by expanding the integral representations
(38)–(40) using the auxiliary functions (42) and (43) (see the next section). For simple factorial
growth, δ2l ∼ �(l), r2l would depend linearly on l.

In what follows we want to ask the question what can be said about the factorial growth
without using any knowledge of the special functions (42) and (43). That is, we perform a
brute-force derivative expansion before calculating any integrals, trying to extend the method
of the previous section to orders as large as possible to gain a maximum of information. The
philosophy behind is our expectation that for realistic backgrounds such as laser fields this type
of derivative expansion will be one of the main tools when analytical methods are not available.
We thus expect our method to provide results complementary to numerical approaches like
world-line Monte Carlo [30–33].

In order to extract the asymptotic behaviour of δ2l or r2l with high accuracy it is obviously
desirable to go to the largest orders possible. Again, this is only feasible with the aid of
computer algebra and was performed with an optimized Mathematica routine. Using a
standard desktop PC we were able to achieve a maximal order of 2l = 82. The determination
of all 82/2 coefficients for a given value ε2 of intensity takes about an hour.

7 We thank Paul Rakow for bringing this idea to our attention [29].
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Figure 3. Successive coefficient ratio r2l+ as a function of order 2l for four different intensities,
ε2 = 0.1 (�), ε2 = 1 (�), ε2 = 100 (�) and ε2 = 500 (�).
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Figure 4. Successive coefficient ratio r2l− as a function of order 2l for four different intensities,
ε2 = 0.1 (�), ε2 = 1 (�), ε2 = 100 (�) and ε2 = 500 (�).

In figures 3 and 4 we have plotted the ratio (75) as a function of order 2l for different
values of the intensity ε2 ranging from 0.1 (subcritical) to 500 (supercritical).

One notes the following: first, the ε-dependence of r2l is rather weak as expected from
the discussion in the preceding section and the second expression in (75). To recognize
corrections to the leading behaviour which is independent of ε one has to go to very large
intensities and/or orders. For instance, the graphs for ε2 = 0.1 and ε2 = 1 basically are on
top of each other. One needs ε = O(102) to see 10% deviations from the graphs with small
ε values. This is consistent with the coefficients of ε2 in (75) being of order 10−3, cf (64)
and (65).

Second, and more importantly, the ratio r2l seems to depend quadratically on l which
is simply explained by an asymptotic behaviour δ2l ∼ �(2l). Let us try to perform a more
quantitative analysis. The following general ansatz

c2l (0) = ρ2l[�(2l − σ) + τ�(2l − σ − 1)], (76)

which is tailored after examples where exact results are available [28, 34], implies a ratio

r2l = ρ2[(2l)2 + (1 − 2σ)2l + σ 2 − σ − 2τ ] ≡ a2(2l)2 + a12l + a0. (77)

Fitting the curves of figures 3 and 4 to quadratic polynomials we find the ai values listed in
table 1.

The errors have been estimated by also fitting higher-order polynomials and monitoring
the change in the coefficients. For all fits an extrapolation to l → ∞ has been performed
using Laurent series techniques.
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Table 1. Fitted values for the polynomial coefficients in (77).

ε2 = 0.1 ε2 = 1 ε2 = 100 ε2 = 500

a2+ 0.562 56(11) 0.562 95(35) 0.607(11) 0.8383(38)
a1+ 1.6892(29) 1.6899(49) 1.817(44) 2.51(42)
a0+ 1.691(41) 1.693(46) 1.69(27) 1.4(2.5)

a2− 0.562 535(27) 0.562 75(15) 0.5865(15) 0.699(11)
a1− 1.687 41(46) 1.687 95(16) 1.7591(21) 2.10(15)
a0− 1.3926(36) 1.3928(70) 1.38(13) 1.25(90)

Table 2. Numerical values for the polynomial coefficients in (76).

ε2 = 0.1 ε2 = 1 ε2 = 100 ε2 = 500

ρ+ 0.750 04(15) 0.750 30(47) 0.779(14) 0.9156(42)

σ+ −1.0014(23) −1.009(34) −0.9967(91) −1.00(24)

τ+ −0.501(65) −0.502(69) −0.40(35) 0.2(2.2)

ρ− 0.750 023(36) 0.750 17(20) 0.7658(20) 0.836(13)

σ− −0.999 83(34) −0.999 73(26) −0.9997(20) −1.002(84)

τ− −0.2380(52) −0.238(12) −0.18(22) 0.11(99)

Via (77) the values of table 1 translate into the asymptotic coefficients ρ, σ and τ

introduced in (76) as listed in table 2.
One notes that, for small intensities, both ρ and σ are the same for the two indices of

reflection, i.e. ρ+ = ρ− ≡ ρ and σ+ = σ− ≡ σ while τ+ 	= τ−. Furthermore, σ seems to be
independent of intensity (unlike ρ and τ ). We can even guess the following ‘analytic’ values
for ρ and σ ,

ρ = 3/4, and σ = −1. (78)

For ε2 � 1 these values for ρ and σ should be quite accurate. Not unexpectedly, the largest
errors reside in the subleading coefficients τ±. In view of this we refrain from any further
guesses and just quote the τ -values of table 2.

We conclude this numerical discussion with two remarks. First, one may ask whether
the quadratic behaviour (77), which seems to work so well, can be confirmed by doing an
unbiased fit to the leading asymptotics of the form

c2l (0) = ρ2l�(βl − σ), (79)

rather than using (76). For the ‘plus’ case and the two extreme intensities, ε2 = 0.1 and
ε2 = 500, we have checked that quadratic behaviour (i.e. β = 2) is indeed obtained with a
relative error of less than 10−3. The fit is somewhat better for the low intensity as compared
to the large one, the residual mean squares being 0.043 and 0.30, respectively.

Second, with an eye towards realistic backgrounds like lasers, one may ask how many
orders need to be minimally included to make statements about the asymptotics. We have
therefore investigated the dependence of the fit parameters on the highest order 2l included in
the fit. This dependence is displayed in figure 5 which shows the relative difference,

Ri ≡ ai+(2l) − ai+(82)

ai+(2l) + ai+(82)
, i = 0, 1, 2, 8 � 2l � 80, (80)

as a function of the maximum order 2l included, for two values of intensity (left: intensity
ε2 = 0.1; right: ε2 = 500.). The sizes of the plot symbols are chosen such that the relative
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Figure 5. Behaviour of the fit coefficients a2 (�), a1 (�) and a0 (◦) as a function of the maximal
order 2l employed for their determination relative to their values at 2l = 82 (represented by the
null line). Left: intensity ε2 = 0.1. Right: intensity ε2 = 500.

difference Ri drops below 1% as soon as the symbol touches the null line representing our best
fit with 2l = 82. To determine the leading (quadratic) coefficient a2 to this accuracy about
20 orders in ω, hence 10 orders in the actual expansion parameter ω2, seem sufficient. For
the subleading coefficients, one has to go to orders 2l of 40 and 80, respectively (for intensity
0.1). This tendency gets worse if the intensity increases. For the leading coefficient encoded
in R2, the intensity dependence is rather weak.

With all coefficients being safely determined let us plug the asymptotic ansatz (76) into
the expansion (74) adopting the approximation (67) so that the expansion parameter becomes
εν rather than ν. This should be fine for ε2 � 1. As our ansatz (76) is supposed to hold only
asymptotically for large orders we cannot expect to describe the low orders accurately. We
nevertheless proceed by eliminating the Gamma functions using the integral expression

ρz�(z) =
∫ ∞

0
ds

e−1/ρs

sz+1
. (81)

This transforms the required summations over l into geometric series and yields the following
integral representation for (74),

�±(ε, ν) = N±
αε2

45π

∫ ∞

0
ds

s

s2 − (εν)2
[(ρs)σ + τ±(ρs)σ+1] e−1/ρs, (82)

where we have allowed for an undetermined scale N±. As it stands the integral is ambiguous
as there are poles on the real axis. The left-hand side may be viewed as originating from the
derivative (or εν) expansion which has real coefficients. It is therefore tempting to interpret
(82) as the following dispersion integral (see e.g. [35], chapter 18),

Re �±(εν) = N±
2

π
P

∫ ∞

0
ds

s

s2 − (εν)2
Im �±(s), (83)
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where the pole ambiguity has been resolved in terms of the Cauchy principal value denoted
by P. The right-hand side contains a ‘nonperturbative imaginary part’ [34],

Im �±(εν) = N±
αε2

90
(ενρ)σ (1 + τ±ενρ) e−1/ενρ, (84)

i.e. an exponential that cannot be obtained from a perturbative expansion in εν. Inserting the
universal values (78) and τ± from table 2 this becomes

Im �±(εν) = N±
αε2

90

4

3εν

(
1 − 3εν

4

{
0.50

0.24

})
e−4/3εν . (85)

Note that the small parameter involved seems to be 3εν/4.
Summarizing we can say that our large-order derivative expansion has provided us with a

quantitative formula for the asymptotics of the series which by means of (83) could be turned
into a statement about the nonperturbative imaginary part. As already stated, this should be
directly related to absorption and pair production. In what follows we will check our findings
by an analytic discussion of the integral representations of the eigenvalues �i , in particular
of (40).

5. Analytic results

Proceeding analytically is equivalent to analysing the (derivative of the) auxiliary function
f (z) introduced in (42). The leading orders for both weak and strong external fields have
already been investigated by Narozhnyi [10] (see also [36]). In this section we want to go
further and discuss arbitrary large orders in the low-frequency, weak-field expansion of the
eigenvalues �i . Nevertheless, to keep things manageable we follow Narozhnyi’s example
and adopt an approximation that leads to substantial simplifications. Namely, we neglect
vacuum modifications in expressions involving the eigenvalues �i(λ, κ) by setting n = 1 or,
equivalently, λ = 0 in their arguments. From (36) and (37) we thus have the approximate
identities

�0(λ, κ2) � �0(0, κ2) = 0, (86)

�±(λ, κ2) � �±(0, κ2) = −m2
eκ

2P±(0, κ2). (87)

According to (56) we have in the same approximation,

κ � 2εν, (88)

which turns our eigenvalues into functions of the product εν in line with our discussion of the
previous section. The upshot of all this is that the dispersion relations (48) simplify drastically
so that one is left with the task to determine P± in

�±(κ, λ) � �±(εν) � 2ε2P±(εν). (89)

As an aside we remark that according to (33), (34) and (35) Narozhnyi’s approximation is
expected to be particularly good if probe and background are perpendicular as b2 and hence κ

are indeed independent of n in this case8. The perpendicular set-up has recently been suggested
as a means to look for ‘vacuum diffraction’ [37].

To evaluate (89) we want to calculate P± as a power series in εν using the integral
representation (40). From the definition of κ2 in (35) or (88) and of z(λ, κ, xx̄) in (41) it is
clear that an expansion in εν corresponds to determining the large-z asymptotics of

f ′(z) = πGi′(z) + iπAi′(z), (90)

8 with the replacement 2εν → εν understood in (88).
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which appears in the integrand of (40). Using asymptotic expansions for Ai(z) given in [17]
and Gi(z) in [38] one obtains for (90)

f ′(z) = − 1

z2
− 1

z5

∞∑
k=0

gk

z3k
− i

2
π1/2z1/4 e−ζ

∞∑
k=0

(−1)kAkζ
−k, (91)

with the abbreviations

ζ ≡ 2

3
z3/2, (92)

gk ≡ (3k + 4)�(3k + 3)

3k�(k + 1)
, (93)

Ak ≡ − 6k + 1

6k − 1

�(3k + 1/2)

54kk!�(k + 1/2)
. (94)

The expression (91) now has to be plugged in the integral (40). Throughout the subsequent
calculations we use Narozhnyi’s approximation which implies

z � (κxx̄)−2/3, ζ � 2/3κxx̄. (95)

In what follows we will separately calculate the real and imaginary parts of P±.

5.1. Calculation of the real part

Using (88), (95) and the integral representation of the Beta function,∫ 1

0
dx xn−1x̄m−1 = B(n,m) = �(n)�(m)

�(n + m)
, (96)

the real part of P± can be obtained in closed form,

Re P±(κ) = αm2

3π

∑
l�0

Glκ
2l{2B(2l + 2, 2l + 2) + (1 ± 3)B(2l + 3, 2l + 3)}. (97)

Here, we have introduced the new expansion coefficients

Gl ≡
{

1, l = 0
gl−1, l > 0.

(98)

The leading term (l = 0) in the expansion (97) yields for (89)

�±(εν) = 2ε2P±(εν) � (11 ± 3)
αε2

45π
, (99)

which reassuringly is consistent with (71).
It is the presence of the Beta functions in (97) that causes factorial growth. To analyse

this in the spirit of the previous section we expand the corrections to the indices of refraction
according to (66) and (72),

Re �± ≡ 2ε2 Re P± = αε2

45π

∑
l�0

c2l,±(0)(εν)2l . (100)

Comparing with (97) we find the coefficient ratios

r2l± = 4
Gl+1

Gl

2B(2l + 4, 2l + 4) + (1 ± 3)B(2l + 5, 2l + 5)

2B(2l + 2, 2l + 2) + (1 ± 3)B(2l + 3, 2l + 3)
. (101)
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Figure 6. Coefficient ratio r2l+ as a function of order 2l. Diamonds: numerical values for ε2 = 0.1;
crosses: numerical values for ε2 = 500 (both as in figure 3); full line: analytical ratio from (101).

These can be evaluated exactly to give

r2l+ = 2(6l + 13)(3l + 4)(3l + 2)(2l + 3)(l + 1)

(6l + 7)(4l + 9)(4l + 7)

= 9

16
(2l)2 +

54

32
2l +

452

256
− 372

256

1

2l
+ O(1/l2), (102)

r2l− = (6l + 14)(3l + 2)(2l + 3)(l + 1)

(4l + 9)(4l + 7)

= 9

16
(2l)2 +

54

32
2l +

356

256
− 12

256

1

2l
+ O(1/l2). (103)

Obviously, as the r2l± are independent of intensity they cannot describe all curves of figures 3
and 4 which, after all, are intensity dependent. However, we expect good agreement between
numerical and analytical values of r2l± for small intensities ε2 � 1. This is nicely corroborated
by the graphs of figure 6 where the results for ε2 = 0.1 are on top of each other for all values
of 2l. This near-perfect agreement is due to the fact that upon neglecting the ε dependence
of the coefficients (67) (and within Narozhnyi’s approximation) all expansion coefficients are
basically factorials, cf (97).

Matching (102) and (103) with (77) we read off the coefficients

a2 = 9
16 = 0.5625, (104)
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a1 = 54
32 = 1.6875, (105)

a0+ = 452
256 = 1.765 625, (106)

a0− = 356
256 = 1.390 625, (107)

which compare favourably with the entries of table 1 for ε2 � 1. The ai translate exactly
into the asymptotic parameters ρ = 3/4 and σ = −1 we had guessed in (78) while the
τ -parameters become

τ+ = − 41
72 = −0.5694, (108)

τ− = − 17
72 = −0.2361. (109)

Again, these agree satisfactorily with the entries of table 2 for small ε, in particular for subscript
‘minus’.

It remains to rewrite our nonperturbative imaginary part (85) by replacing the numerical
τ± by their analytic counterparts just obtained,

Im �±(εν) = N±
αε2

90

4

3εν

(
1 − 3εν

4

29 ± 12

72

)
e−4/3εν . (110)

Let us finally try to check this by a direct calculation of the imaginary part.

5.2. Calculation of the imaginary part

The determination of the imaginary part of P± is more involved as the integrand (40) contains
an exponential that cannot be expanded in powers of xx̄. Explicitly, the integrand is of the
form

e−ζ (xx̄)n � exp(−2/3κxx̄)(xx̄)n, (111)

which is to be integrated from 0 to 1. In order to proceed analytically we note that the product
xx̄ is peaked at the value 1/4. Thus, it seems feasible to perform the integral via saddle point
approximation which results in the formula

I (a, b) ≡
∫ 1

0
dx e−axx̄(xx̄)b �

( π

16a + 4b

)1/2
4−b e−4a. (112)

Here, the first prefactor has been obtained by extending the integration to the whole real axis
in order to have a Gaussian integral. In our case, the parameters a and b are given by

a = 2/3κ � 1/3εν and b = k ± 1/2, k = 0, 1, 2, . . . . (113)

Comparison with a numerical evaluation for k = 0, . . . , 5 shows that the error of the
approximation is about 10% for a = 1, 1% for a = 5 and 0.1% for a = 10. Hence, for
large a (which we have) the formula (112) should work very well.

Having gained sufficient confidence in our saddle point approximation we rewrite the
imaginary part of (40) using (91),

Im P± � α

6π1/2
κ−3/2

∑
k�0

(−1)kAk{2I (a, k − 1/2) + (1 ± 3)I (a, k + 1/2)}, (114)

with Ak as defined in (94). Employing our integration formula (112) we find

Im P± � α

24

√
3

2

1

κ
e−8/3κ

∑
k�0

Bk±

(
−3κ

8

)k

, (115)
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where the new expansion coefficients are given by the somewhat lengthy expression

Bk± ≡ Ak

{
9 ± 3

4
+

72k

(6k − 7)(6k + 1)

[
9 ± 3

4
(k − 1) +

−7 ± 3

8

]}
. (116)

Admittedly, this is not too illuminating so we evaluate the series (115) to order κ2 or (εν)2

and use (89) to determine

Im �± � N±,sp
αε2

90

4

3εν
e−4/3εν

{
1 +

25 ∓ 12

72

3εν

4
+

265 ∓ 168

2 × 722

(
3εν

4

)2

. . .

}
. (117)

In the above we have introduced the saddle point normalization factor9

N±,sp ≡ (3 ± 1) 45
32

√
3
2 . (118)

We refrain from identifying this with the analogous factor in (110) as the approximation
schemes involved do not allow for a direct comparison of the normalization. The latter will
be fixed in a moment by means of the dispersion relation (83).

Putting these niceties aside we stress that we find perfect agreement between (110) and
(117) concerning the LO dependence on powers of εν and the nonperturbative exponential.
The only discrepancy resides in the τ -coefficients multiplying the sub-leading terms of order
εν. In view of the fairly different approximations employed this is probably not too surprising.

6. Discussion and conclusion

With the consequences of our large-order analysis confirmed analytically we can go even one
step further. We can use the Kramers–Kronig relation (83) to actually define the real part of
the indices of refraction nonperturbatively, i.e. without relying on the derivative expansion. To
this end we take the leading order of the imaginary part (110) or (117) as a model by writing

Im �±(ε, ν) = N±
αε2

90

4

3εν
e−4/3εν . (119)

Plugging this into the dispersion relation (83) we can actually perform the principal value
integral analytically with the result

Re �± = N±
αε2

90π

4

3εν
{Ei(4/3εν) e−4/3εν − Ei(−4/3εν) e4/3εν}. (120)

Matching the perturbative small-εν behaviour fixes the normalization to be

N± = 11 ± 3. (121)

Interestingly, in (120) exponential integrals Ei appear multiplied by exponentials, constituting
a paradigm example of functions displaying factorial growth expansion coefficients. With the
real part thus determined we summarize our findings in figure 7 which shows both real and
imaginary parts of �+ as a function of frequency ν for fixed ε2 = 0.1. We have added the
series expansion to second order (the full line of figure 1) which coincides well with the exact
real part for small ν where the factorial growth is not visible yet.

The graph for �− looks almost identical with a slight shift in the vertical scale due to the
difference in normalization. Hence, we refrain from producing an extra plot.

By construction, the real and imaginary parts of � (thus also of n = 1 + �) are related by
the Kramers–Kronig relation (83) with Im n 	= 0 signalling absorption, i.e. pair production.

9 The leading term in (117) has already been determined by Ritus [11]. His normalization differs from ours by a
factor of 2, a discrepancy we have not been able to trace. The most plausible explanation seem to be the ambiguities
in determining the prefactor in the saddle point approximation.
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Figure 7. Real and imaginary parts of the deviation �+ of the index n+ from unity (dashed and
lower full curve, respectively). The upper full curve bending upwards is the series expansion of
�+ to second order (same curve as in figure 1).

By looking at figure 7 we see that the latter sets in roughly at the critical value of ν = 1. Here,
Re n attains its maximum and decreases for ν � 1 while Im n increases. Mathematically, we
may state

∂ Re n±
∂ω

> 0 for ω � me, (normal dispersion)

∂ Re n±
∂ω

< 0 for ω � me, (anomalous dispersion)

(122)

where we have reinstated physical units (recall that ω is the probe frequency). We conclude
that it is a consequence of the Kramers–Kronig relations based on the fundamental principle
of causality that absorption is intimately connected to anomalous dispersion.

The physics involved can be wrapped up as follows. We have analysed the influence of
crossed background fields on the propagation of light (e.g. laser beams). Using exact integral
representations for the eigenvalues of the polarization tensor we found that to all orders in
probe frequency and background intensity there is birefringence of the vacuum induced by
the crossed background fields. The effect can be described in terms of background-dependent
effective metrics h

µν
± implying dispersion relations h

µν
± kµkν = 0 which describe distorted light

cones. Solving for the indices of refraction n± one finds that they are frequency dependent,
starting out with normal dispersion. At critical energy and intensity anomalous dispersion sets
in together with absorption due to pair production.
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At present an experiment is being designed that plans to measure vacuum birefringence
using a high-power laser background probed by x-ray beams [6]. The experiment is quite
demanding as one has to measure ellipticity signals with a sensitivity at the order of 10−11 for
presently available probes and lasers. As the signal is proportional to ν2ε4 it may be readily
enhanced by increasing probe frequency and background intensity. Within the next few years
one expects a reduction of the required sensitivity down to 10−4. Normal dispersion is an NLO
effect; hence implies a signal of order ν4ε4 requiring a sensitivity of 10−8 within the envisaged
scenario. This is still within the theoretical limits of measurability [39]. Pair production shows
up in terms of a nonvanishing imaginary part or as anomalous dispersion of the real part. To
become observable both effects require parameters ν and ε close to their critical values. For
instance, if ε � 10−2 then Im � � 10−11 for ν � 0.8. Even these moderate values cannot be
attained at present so that it is presumably more reasonable to look for positrons rather than
optical signals to detect pair production.

From a theorist’s point of view one should also consider two-loop corrections and the
influence of nonconstant backgrounds. The two-loop corrections to the Heisenberg–Euler
Lagrangian (cf appendix) have been calculated by Ritus [40]. They amount to a replacement
of the LO coefficients of (71) according to{

14

8

}
→

{
14(1 + 1315α/252π)

8(1 + 40α/9π)

}
. (123)

These are both one-percent corrections to the LO = O(ν0) behaviour in (71).
Regarding nonconstant backgrounds it is possible to slightly relax the crossed-field

assumption in a perfectly controlled manner. Laser beams may be more realistically described
as Gaussian beams rather than plane waves. The former have a Gaussian profile in transverse
direction of ‘waist size’ w0 and a Lorentz profile in the longitudinal direction characterized by
the ‘Rayleigh length’ z0. One can form the small dimensionless parameter � ≡ w0/2z0 � 1
[41] which describes the deviation from the crossed-field limit corresponding to � = 0.
Naturally, one expects that there will be O(�)-corrections to the results presented here.

It is this context of nonconstant backgrounds where the intuition gained in this paper is
expected to pay off. In this more realistic case, we cannot hope to have any exact analytical
results available. Thus it is important to know both the region of validity and the limitations
of derivative and weak-field expansions. From our results they are both expected to break
down if the product of frequency squared and intensity becomes ω2I = O

(
m6

e

/
e2

)
, or, in

dimensionless units, ε2ν2 = O(1) (see figure 7). With the present values of ε2ν2 � 10−13

and those expected in the near future (ε2ν2 � 10−10), however, one is definitely on the safe
side where (asymptotic) expansion methods make perfect sense.
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Appendix. Heisenberg-Euler analysis

In this appendix we will check our LO results (59) and (60) in an independent manner by using
the Heisenberg–Euler (HE) effective Lagrangian [42, 43]. This is the LO in the derivative
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expansion of the effective action (5) but contains all orders in the intensity. It has the well-
known proper-time representation [4] (we follow the nice review [9])

δL =− 1

8π2

∫ ∞

0

ds

s
e−seEc

{
e2abs2

tanh(ebs) tan(eas)
− 1 − e2s2

3
(a2 − b2)

}
, (A.1)

and is exact for constant fields but remains approximately valid for photon frequencies small
compared to the electron mass as in (12). The quantities ±ia and ±b are the eigenvalues of
the constant matrix

Gµν ≡ Fµν + fµν, (A.2)

consisting of both background and probe field. They are related to the standard scalar and
pseudoscalar invariants defined in (22) and (23) via

a2 − b2 = − 1
2GµνG

µν ≡ 2S , (A.3)

ab = − 1
4GµνG̃

µν ≡ P. (A.4)

Note that in this appendix the invariants S and P denote the contribution of both background
and fluctuation, cf (A.2), and thus are nonvanishing. The representation (A.1) contains all
orders in the field Gµν . Low intensities allow for a weak-field expansion the first two orders
of which are

δL = α2

m4
e

(
8

45
S 2 +

14

45
P2

)
+

α3

m8
e

(
256π

315
S 3 +

416π

315
S P2

)
. (A.5)

It is worth pointing out that exactly the same numerical coefficients appear as in (71).
For what follows it is useful to write the LO of (A.5) as

δL = 1
2γ−S 2 + 1

2γ+P
2 + O(α3), (A.6)

with the couplings γ± given by

γ+ ≡ 7ξ, γ− ≡ 4ξ, ξ ≡ α

45π

1

E2
c

. (A.7)

To approximate the polarization tensor �µν we start from (A.5), decompose into background
F and probe f according to (A.2) and expand the HE action, δS = ∫

d4xδL , to second order
in the probe field f ,

δS[F, f ] = 1
8 (fαβ,�αβµνfµν). (A.8)

The tensor �αβµν is proportional to the second derivative of δL ,

�αβµν ≡ 4
∂2(δL )

∂fαβ∂fµν

∣∣∣∣
f =0

. (A.9)

So far we have not exploited the fact that our background consists of crossed fields. Note that
the derivative in (A.9) is evaluated right at the background. It is easy to see that enormous
simplifications arise in the crossed-field case due to the vanishing of the background invariants.
The generic term in the HE Lagrangian is of the form S nP2m (as odd powers of P are
forbidden by CP invariance) with n and m integers. Taking the two derivatives in (A.9) at
f = 0 one will always end up with (vanishing) powers of S and P unless n and m are
sufficiently small. The only surviving cases turn out to be the Maxwell term, (n = 1,m = 0),
and the LO (A.6) with n = 2,m = 0 and n = 0,m = 1. Thus, for crossed fields, the effective
Lagrangian (A.1) gets truncated after the LO α2

/
m4

e . In other words, the LO describes the
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exact dependence on intensity for crossed-field background10! In view of these considerations
the tensor �µναβ simplifies to

�µναβ = γ−FαβFµν + γ+F̃
αβF̃ µν. (A.10)

Note that it is symmetric upon exchanging (µν) ↔ (αβ) and antisymmetric both in µ and ν

as well as α and β.
In momentum space the polarization tensor �µν is then given by contracting (A.10) twice

with the wave vector k associated with the probe field fµν ,

�µν(k) ≡ �µανβkαkβ = γ−bµbν + γ+b̃
µb̃ν . (A.11)

To LO in k2 this coincides with (21) as it should, the nonvanishing eigenvalues being given by
�± = γ±b2(k). They imply the dispersion relations,

k2 − γ±b2(k) = 0 (A.12)

and effective metrics

h
µν
± = gµν + γ±T µν. (A.13)

Introducing the index n of refraction according to (4) the dispersion relations (A.12) and
(A.13) become four quadratic equations for n. Demanding n = 1 for γ± = 0 singles out two
of them. These are conveniently written in terms of the abbreviations (29)–(31),

n± = 1

1 − γ±(H − Hk)

{√
1 + γ±Hk − γ 2±[H2 − (k · S)2 − HHk] − γ±k ·S

}
(A.14)

and have the small-γ± expansion,

n± = 1 + γ±(H − k · S − Hk/2) + 1
2γ 2

±[(H − k ·S − Hk)
2 − Hk/2] + · · · . (A.15)

For a head-on collision of probe and background (A.14) yields the simple expression

n± = 1 + γ±I

1 − γ±I
= 1 +

2γ±I

1 − γ±I
≡ 1 + �±, (A.16)

which is exact to all orders in the intensity I. Noting that

γ±I = 11 ± 3

2

αε2

45π
, (A.17)

the result (A.16) coincides with (59) and (60).
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